
Tutorial 1: Your First Triangle!

Summary

For your first dabble in OpenGL, you are going to create the graphics programming equivalent of
’Hello World’ - outputting a single coloured triangle. It doesn’t get any simpler than that!.

New Concepts

Vertex Buffers, Vertex Array Objects, Vertex Attributes, Shader Programs, Vertex Shader Objects,
Fragment Shader Objects, Symbolic Constants, Object Names

Introduction

So, a triangle - Sounds boring, yes? Well, it is! But drawing a triangle on screen will teach you
the basics of OpenGL, and get you well on your way to doing more advanced graphical rendering.
In order to write graphical programs using OpenGL, you’ll need to know how to handle 3 different
types of data - vertex data, texture data, and shaders. We’ll handle texture data in a later tutorial;
for now we’ll concentrate on how to handle vertex data and shaders. OpenGL provides functions for
copying vertex data, and compiling shaders, but provides little in the way of an ’Object Oriented’ way
to handle such data - there’s no class structure to neatly encapsulate functionality. For this reason,
this first tutorial is going to show you how to write your own Mesh class to handle vertex data, and
a Shader class, to load in and handle shaders. This tutorial series will then use these as a basis to
show you more advanced OpenGL functionality, so although a triangle on screen may not sound very
interesting, this is an important tutorial!

Vertex Data

Vertices are the points in space that make up the geometry that represent everything in a modern
video game - everything from the enemies on screen, to the in-game HUD - they’re all made up of
vertices! Each of the vertices in a geometry mesh will have a number of attributes, such as its position,
colour, and texture coordinate. In order to draw a mesh on screen, this vertex data must first be
buffered by copying it to graphics memory. Each mesh in an OpenGL application will have one of
these Vertex Buffer Objects for each type of vertex attribute, grouped together into a single Vertex
Array Object. This array object also stores information on what each buffer contains, and how each
vertex buffer is to be accessed, such as what data format it is (i.e whether it is an integer, float, etc),
and how many bytes each vertex element takes up. Once all of the vertex data has been buffered into

1



the RAM of the graphics card, and the Vertex Array Object created, it can be used by OpenGL to
draw a mesh. It’s worth noting that neither VBOs or VAOs define what the vertex data represents -
it could be a group of triangles, a set of lines, convex polygons, or even just a cloud of points.

Shaders

Shaders are short programs that run on the graphics card, and turn your vertex data into a final image
on screen. A single shader executable is made up of separate components - vertex programs, fragment
programs, and maybe even geometry programs. Vertex programs take in the vertices of your mesh
VBOs, and perform operations on them, before passing the resulting data on to fragment shaders.
These operations usually consist of transforming the vertex data by several transformation matrices
- you’ll see how to do this in the next tutorial. Fragment shaders take in the results of this process,
and turn them into fragments - colour data that will be written to the current OpenGL colour buffer.
Operations like sampling from a texture, or performing lighting calculations are the domain of the
fragment shader. Some shader executables also have a geometry shader. These shaders sit between
vertex and fragment shaders, taking in primitive data (arrays of vertices that represent lines, or tri-
angles) from the vertex shader, and generating new geometry from them - so each inputted triangle
could be transformed into a number of new triangles, all sent to the fragment shader for colouring.

In OpenGL, shaders are written in GLSL. This is a C-like language, with datatypes and functions
specific to graphical rendering. They can have functions, if statements, for loops, and so on, just
like the C++ programs you have been writing, but they what they can’t have are classes. Shaders
specialise in performing operations on floating point vectors - structures with multiple data elements.
For example, shaders can very quickly perform dot and cross products on 4-component vectors, as
well as multiply them together - handy for blending vertex colours and transforming vertex positions!
For this reason, GLSL has additional in-built datatypes to represent vectors, beyond the floats and
integers you are used to. The vec2, vec3 and vec4 GLSL datatypes represent vectors of 2, 3 and 4
floating point components, respectively. Their floats can be accessed just like member variables of a
C struct or class, using the identifiers x y z and w - note that w is the fourth component of a vec4,
not the first! You’ll see how to perform operations on these vector datatypes as this tutorial series
progresses, including the multiplication of vectors by matrices, via the mat4 datatype.

To use shaders in OpenGL applications, their sourcecode must be loaded in and then compiled, just
like your C programs must be compiled before they can run. This compilation process takes vertex,
fragment, or geometry shader sourcecode, and creates a Shader Object. These shader objects are then
attached to a Shader Program - a sort of container for managing Shader Objects. Then, the Shader
Object is linked together into a final Shader Executable - this linking process ties the output of one
shader object to the input of the next, creating a final cohesive program for graphical rendering.

Example program

In this tutorial, you’ll create 3 classes, and two text files. The first two classes, Mesh and Shader,
are going to be added to the nclgl Visual Studio project, so that every tutorial you write will be able
to use them. The third class you’ll be making is a Renderer class, which will go in the Tutorial 1
project, and is a subclass of the NCLGL project OGLRenderer class. The two text files will contain
the vertex and shader code for this tutorial, and will go in the Shaders folder of the nclgl download -
we’ll be reusing our shader code in later tutorials, too!

2



The Mesh class

Now, to put what you’ve just learned on vertices into practice! Every tutorial in this series is based
around extending the existing nclgl classes, which provides a basic OpenGL creation class, as well as
some vector math and input classes. We’re going to need a new class to this Framework, to encapsulate
the geometry rendering functionality of OpenGL, so add a class called Mesh to the Shared project
in the Visual Studio solution provided for these tutorials, and input the following code into its header
file.

Header file

When OpenGL generates a VAO or VBO, you get an object name - a numerical identifier for that
object. So our Mesh class has protected member variables to store these object names, of type
GLuint - an OpenGL typedef, which defines an unsigned int data type. There’s also member
variables to hold how many vertices the mesh has, and what its draw type is - this could be triangles,
points, lines, or any other draw primitive that OpenGL supports.

The bufferObject array uses an enum to define its size, which might seem unusual. By default,
enums are named integers, incrementing from a starting value of 0 - so the MAX BUFFER enum
compiles to a value of 2, enough to use as a size in an array to store the vertex position and vertex
colour data we’re using in this tutorial, with the enums prior to it equating to valid indices to the
bufferObject array. In later tutorials, we’ll extend the Mesh class to hold texture coordinates, normals,
and other things - if we add an enum for each of these extra attributes before MAX BUFFER, it will
always equate to an array size large enough to store all of the Vertex Buffer names we need - handy!
Also, to store our vertices and colours, we have two pointers, which we will initialise with data later.

Finally, our header file has a static public function, GenerateTriangle, a virtual function Draw,
and a protected function BufferData. Their names should make them pretty self explanatory - Draw
draws the mesh, BufferData copies the mesh vertex data into graphics memory, and GenerateTriangle
returns a pointer to a Mesh, containing VAO and VBO data for a coloured triangle. This tutorial
series will be using such a triangle for the first few tutorials, so making the code that will generate it
available in the shared Framework is a useful time saver.

1 #pragma once

2 #include "OGLRenderer.h"

3

4 enum MeshBuffer {

5 VERTEX_BUFFER , COLOUR_BUFFER , MAX_BUFFER

6 };

7 class Mesh {

8 public:

9 Mesh(void);

10 ~Mesh(void);

11

12 virtual void Draw ();

13 static Mesh* GenerateTriangle ();

14

15 protected:

16 void BufferData ();

17

18 GLuint arrayObject;

19 GLuint bufferObject[MAX_BUFFER ];

20 GLuint numVertices;

21 GLuint type;

22

23 Vector3* vertices;

24 Vector4* colours;

25 };

3



Mesh.h

Class file

Now for the cpp file. In our constructor, we use our handy enum to initialise all of our Vertex Buffer
Objects to 0 - in OpenGL a name of 0 is a little bit a null pointer, so it will be ignored. We then create
a name for our Vertex Array Object using glGenVertexArrays, which takes in a reference to the
unsigned int we want the generated name to go into. This is the general mechanism for how OpenGL
handles name generation - Vertex Buffers, textures, and other OpenGL data structures you’ll come
across later, all use a similar function signature. We also set our draw type to GL TRIANGLES
- this is an example of an OpenGL Symbolic Constant, which is a define with a specific value
that equates to some OpenGL functionality - in this case, that the vertex data should be rendered as
triangles.

1 #include "Mesh.h"

2

3 Mesh::Mesh(void) {

4 for(int i = 0; i < MAX_BUFFER; ++i) {

5 bufferObject[i] = 0;

6 }

7 glGenVertexArrays (1, &arrayObject );

8

9 numVertices = 0;

10 vertices = NULL;

11 colours = NULL;

12 type = GL_TRIANGLES;

13 }

Mesh.cpp

The destructor for the Mesh class deletes our VAO and VBOs, using the appropriate OpenGL
delete functions, which just like the generation functions, take a reference to the names you wish to
delete.

14 Mesh ::~ Mesh(void) {

15 glDeleteVertexArrays (1, &arrayObject );

16 glDeleteBuffers(MAX_BUFFER , bufferObject );

17 delete [] vertices;

18 delete [] colours;

19 }

Mesh.cpp

The GenerateTriangle static function will return a pointer to a Mesh, with data in its VAO and
VBOs that will draw a coloured triangle. It does so by initialising a new Mesh on the heap (on line
21), setting its number of vertices to 3, and then initialising its vertices and colours pointers with
data. You should be able to see how the colours equate to red, green, and blue, respectively, and
how the vertices of the triangle are in top, bottom right, bottom left order. The geometry is now in
system memory, but to use it in OpenGL, it must be copied into VBOs. This is achieved by a call to
BufferData. With the data copied, a pointer to the new triangle can be returned.

20 Mesh* Mesh:: GenerateTriangle () {

21 Mesh*m = new Mesh ();

22 m->numVertices = 3;

23

24 m->vertices = new Vector3[m->numVertices ];

4



25 m->vertices [0] = Vector3 (0.0f, 0.5f, 0.0f);

26 m->vertices [1] = Vector3 (0.5f, -0.5f, 0.0f);

27 m->vertices [2] = Vector3 (-0.5f, -0.5f, 0.0f);

28

29 m->colours = new Vector4[m->numVertices ];

30 m->colours [0] = Vector4 (1.0f, 0.0f, 0.0f,1.0f);

31 m->colours [1] = Vector4 (0.0f, 1.0f, 0.0f,1.0f);

32 m->colours [2] = Vector4 (0.0f, 0.0f, 1.0f,1.0f);

33

34 m->BufferData ();

35 return m;

36 }

Mesh.cpp

Here’s how the BufferData function works. It begins by binding the Vertex Array of the Mesh,
as created in the constructor. What does binding an object name do? Binding is another gen-
eral OpenGL concept - most OpenGL functions don’t take in object names, they just perform their
functionality using whatever object name is bound to their relevant element - so texture functions
will perform on the currently bound texture, or as in this case, Vertex Array functionality will be be
performed on the newly bound Vertex Array Object.

Then, starting on lines 39 and 46 we go through the process of buffering the data we created in
GenerateTriangle into graphics memory, for the vertex positions and colours, respectively. On line 39,
we generate a new VBO, storing its name in the first index of our bufferObject array. Then we bind it,
which serves a dual purpose - it means all Vertex Buffer functions are performed on our Vertex Buffer,
and also assigns that VBO to the currently bound Vertex Array Object, neatly tying our VBOs into
a single VAO.

The glBufferData function is what actually copies data into graphics memory - of its 4 param-
eters, the first isn’t too interesting, but the other 3 take a little bit of explaining. Just like the
memcpy function you may have used in the C++ tutorials, glBufferData needs to know how large
the data we’re copying is (in this case 9 floats), a pointer to the start of the data to copy, and a hint
to inform OpenGL how you expect the data to be used - either dynamically updated, or loaded once
as static data. In the case of our triangle, we’re going to buffer it once and then never modify it, so
we’re going to use the GL STATIC DRAW symbolic constant as our hint. These hints allows our
graphics card driver to handle our data more effectively, but don’t place any actual restrictions on
how we can use our data - we can define data as dynamic and then never update it if we really want to.

37 void Mesh:: BufferData () {

38 glBindVertexArray(arrayObject );

39 glGenBuffers (1, &bufferObject[VERTEX_BUFFER ]);

40 glBindBuffer(GL_ARRAY_BUFFER , bufferObject[VERTEX_BUFFER ]);

41 glBufferData(GL_ARRAY_BUFFER , numVertices*sizeof(Vector3),

42 vertices , GL_STATIC_DRAW );

43 glVertexAttribPointer(VERTEX_BUFFER , 3, GL_FLOAT , GL_FALSE , 0, 0);

44 glEnableVertexAttribArray(VERTEX_BUFFER );

45 if (colours) { //Just in case the data has no colour attribute ...

46 glGenBuffers (1, &bufferObject[COLOUR_BUFFER ]);

47 glBindBuffer(GL_ARRAY_BUFFER , bufferObject[COLOUR_BUFFER ]);

48 glBufferData(GL_ARRAY_BUFFER , numVertices*sizeof(Vector4),

49 colours , GL_STATIC_DRAW );

50 glVertexAttribPointer(COLOUR_BUFFER , 4, GL_FLOAT , GL_FALSE ,0,0);

51 glEnableVertexAttribArray(COLOUR_BUFFER );

52 }

53 glBindVertexArray (0);

54 }

Mesh.cpp

5



With our VBO data copied into graphics memory, we can set how to access it, by modifying the
VAO. glVertexAttribPointer tells OpenGL that the vertex attribute has 3 float components per
vertex, while glEnableVertexAttribArray enables it. Note how the VERTEX BUFFER enum
is used throughout - it means we never have to actually look up what index to use for which type of
data when setting attributes or buffering data, the enum handles it, and provides a neat visual hint
as to what data is being modified.
We do the same process again on line 46 for the vertex colour data - note the differing size set in
glBufferData and glVertexAttribPointer. Finally, we unbind our VAO, and return the newly
created Mesh. Unbinding is optional, but recommended - it ensures no other function accidentally
modifies the wrong VAO state!

Finally, we want a function to draw our Mesh. Once the Vertex Array and Vertex Buffers are
set up, drawing them is easy - we just Bind the VAO, and use the glDrawArrays OpenGL func-
tion, which has parameters that set what type of primitive to draw (remember how we set it to
GL TRIANGLES?), the first vertex to draw (generally the first one - index 0 ), and how many
vertices to draw (usually all of them, so the value we store in numVertices).

55 void Mesh::Draw() {

56 glBindVertexArray(arrayObject );

57 glDrawArrays(type , 0, numVertices );

58 glBindVertexArray (0);

59 }

Mesh.cpp

The Shader class

As with the Mesh class, we’re going to add a Shader class to the Shared project. This class is going
to encapsulate all of the tricky bits of loading in and using shaders - it’s a lot of code, but it’ll save
us time in the long run!

Header file

There’s nothing too surprising in the Shader class header - a constructor, a few function declara-
tions, and some member variables to hold the object names of the shader objects and shader program
- just like the Mesh class VBO object names. There’s also 3 defines to use as indices into the objects
array - we don’t need any fancy enums this time, as there’ll only ever be 3 types of shader object.
Note how the constructor has an optional third parameter - most shader programs don’t have a ge-
ometry shader object. We could have made a separate subclass for geometry-enabled shader programs
instead, but for the saving of a single unsigned int, it’s not really worth it!

1 #pragma once

2 #include "OGLRenderer.h"

3

4 #define SHADER_VERTEX 0

5 #define SHADER_FRAGMENT 1

6 #define SHADER_GEOMETRY 2

7

8 using namespace std;

9

10 class Shader {

11 public:

12 Shader(string vertex , string fragment , string geometry = "");

13 ~Shader(void);

14

15 GLuint GetProgram () { return program ;}

16 bool LinkProgram ();

6



17 protected:

18 void SetDefaultAttributes ();

19 bool LoadShaderFile(string from , string &into);

20 GLuint GenerateShader(string from , GLenum type);

21

22 GLuint objects [3];

23 GLuint program;

24

25 bool loadFailed;

26 };

Shader.h

Class file

The Shader class constructor takes in 3 strings as parameters, corresponding to the file names for
the vertex, fragment, and geometry shaders, respectively. The constructor starts off by generat-
ing a new shader program object name, and then uses the GenerateShader Shader class function
to generate shader objects for the vertex and fragment shaders; you’ll see how shortly. In OpenGL
3, a shader program always has both a vertex and a fragment shader object, but geometry shader
objects are optional. You should be able to see how the default third parameter of the construc-
tor works now - it’ll be seen as an ’empty’ string, and geometry shader object construction will be
skipped. Once compiled by the GenerateShader function, the shader objects are then attached to
the shader program using the glAttachShader OpenGL function, ready to be linked into the final
executable. We also call the protected function SetDefaultAttributes, which will be explained shortly.

1 #include "Shader.h"

2

3 Shader :: Shader(string vFile , string fFile , string gFile) {

4 program = glCreateProgram ();

5 objects[SHADER_VERTEX] = GenerateShader(vFile ,GL_VERTEX_SHADER );

6 objects[SHADER_FRAGMENT ]= GenerateShader(fFile ,GL_FRAGMENT_SHADER );

7 objects[SHADER_GEOMETRY ]= 0;

8

9 if(!gFile.empty ()) {

10 objects[SHADER_GEOMETRY] = GenerateShader(gFile ,

11 GL_GEOMETRY_SHADER );

12 glAttachShader(program ,objects[SHADER_GEOMETRY ]);

13 }

14 glAttachShader(program ,objects[SHADER_VERTEX ]);

15 glAttachShader(program ,objects[SHADER_FRAGMENT ]);

16 SetDefaultAttributes ();

17 }

Shader.cpp

Next up, our class destructor. It deletes our shader objects and program, allowing OpenGL to
free up their memory, and reuse their object names. It is essentially the reverse of the constructor -
we detach the previously attached shader objects, then delete the shader objects and shader program.

18 Shader ::~ Shader(void) {

19 for(int i = 0; i < 3; ++i) {

20 glDetachShader(program , objects[i]);

21 glDeleteShader(objects[i]);

22 }

23 glDeleteProgram(program );

24 }

Shader.cpp

7



The GenerateShader function used in the constructor creates the shader objects for the vertex
and fragment shaders. It loads in shader object source code, compiles it, and returns an object name
for the resulting shader object. It takes in two parameters - the name of the file to load, and the
type of shader object to compile (either a vertex, fragment, or geometry shader object, denoted by
the OpenGL symbolic constants GL VERTEX SHADER, GL FRAGMENT SHADER and
GL GEOMETRY SHADER, respectively).

It uses another Shader class function on line 31, LoadShaderFile, to create a single long string
containing the shader object source code. Assuming this is successful, We then get an OpenGL object
name for the shader on line 37 using the OpenGL function glCreateShader, and use the OpenGL
functions glShaderSource and glCompileShader to actually compile the shader source code. If
successful, the function returns the shader object’s name. If not, it outputs why compilation failed,
including the exact line number of failure.

25 GLuint Shader :: GenerateShader(string from , GLenum type) {

26 cout << "Compiling Shader ..." << endl;

27

28 string load;

29 if(! LoadShaderFile(from ,load)) {

30 cout << "Compiling failed!" << endl;

31 loadFailed = true;

32 return 0;

33 }

34

35 GLuint shader = glCreateShader(type);

36

37 const char *chars = load.c_str ();

38 glShaderSource(shader , 1, &chars , NULL);

39 glCompileShader(shader );

40

41 GLint status;

42 glGetShaderiv(shader , GL_COMPILE_STATUS , &status );

43

44 if (status == GL_FALSE) {

45 cout << "Compiling failed!" << endl;

46 char error [512];

47 glGetInfoLogARB(shader , sizeof(error), NULL , error);

48 cout << error;

49 loadFailed = true;

50 return 0;

51 }

52 cout << "Compiling success!" << endl << endl;

53 loadFailed = false;

54 return shader;

55 }

Shader.cpp

For the GenerateShader function to work, it needs a string containing all of the required shader
source code. We load this in from a text file, using the LoadShaderFile function. You’ve probably
written very similar functions for text file loading before. It takes in two strings as parameters, a
filename, and a destination string reference. The function uses the STL ifstream class to stream
lines of text into our destination string. It’ll return true if the file exists, or false if it doesn’t, or
otherwise cannot be opened. For good measure, it also outputs the destination string, so we can
examine what it’s loading.

8



56 bool Shader :: LoadShaderFile(string from , string &into) {

57 ifstream file;

58 string temp;

59

60 cout << "Loading shader text from " << from << endl << endl;

61

62 file.open(from.c_str ());

63 if(!file.is_open ()){

64 cout << "File does not exist!" << endl;

65 return false;

66 }

67 while(!file.eof ()){

68 getline(file ,temp);

69 into += temp + "\n";

70 }

71

72 file.close ();

73 cout << into << endl << endl;

74 cout << "Loaded shader text!" << endl << endl;

75 return true;

76 }

Shader.cpp

In the constructor for our Shader class, we call the function SetDefaultAttributes. In order to
correctly pass our vertex data to our shader, we must bind each vertex attribute to one of the input
variables of our shader program. We do so using the glBindAttribLocation OpenGL function,
which takes in a shader object name, attribute index, and shader input variable name as parameters.
Note how we use the Mesh file enums VERTEX BUFFER and COLOUR BUFFER again -
statically assigning attributes to specific indices has saved us quite a lot of attribute handling logic!
It’s quite good practice to keep attribute names the same in every shader, which also has the benefit
of meaning you can bind every attribute in one function for all your shaders! If a shader doesn’t
contain a given attribute, the function doesn’t do anything, so it’s safe to call the same function for
every shader you write.

1 void Shader :: SetDefaultAttributes () {

2 glBindAttribLocation(program , VERTEX_BUFFER , "position");

3 glBindAttribLocation(program , COLOUR_BUFFER , "colour");

4 }

renderer.h

The final function links our attached shader objects into a shader executable. It returns true if
the link is successful, or false if it fails - or if the loading of the shader objects failed. This function
could be extended to include error output, by using a switch statement on the code variable, if we
wanted to be a bit more verbose.

77 bool Shader :: LinkProgram () {

78 if(loadFailed) {

79 return false;

80 }

81 glLinkProgram(program );

82

83 GLint code;

84 glGetProgramiv(program , GL_LINK_STATUS , &code);

85 return code == GL_TRUE ? true : false;

86 }

Shader.cpp

9



The Renderer class

The Renderer class we’re making in this tutorial is going to be pretty simple - Add it as a new
class to the Tutorial1 project, with OGLRenderer as its parent class - the OGLRenderer constructor
creates an OpenGL 3 context for you, and even comes ready with your Mesh and Shader header files
included! It also already has a pointer to a Shader, called curentShader, which will be deleted in its
destructor.

Header file

5 #pragma once

6 #include "./ nclgl/OGLRenderer.h"

7

8 class Renderer : public OGLRenderer {

9 public:

10 Renderer(Window &parent );

11 virtual ~Renderer(void);

12 virtual void RenderScene ();

13

14 protected:

15 Mesh* triangle;

16 };

renderer.h

Class file

The Renderer class constructor begins by using the GenerateTriangle function we wrote earlier
to initialise our member variable triangle. We then initialise the curentShader member variable of the
OGLRenderer class, passing the file names of the vertex and fragment source files we just created as
parameters. We then set the OGLRenderer member variable init to true - our main function will
check against this value to see if everything in the constructor worked as it should. The destructor
is really short - all it has to do is delete the triangle member variable!

1 #include "Renderer.h"

2

3 Renderer :: Renderer(Window &parent) : OGLRenderer(parent) {

4 triangle = Mesh:: GenerateTriangle ();

5

6 currentShader = new Shader(SHADERDIR"basicVertex.glsl",

7 SHADERDIR"colourFragment.glsl");

8

9 if(! currentShader ->LinkProgram ()) {

10 return;

11 }

12

13 init = true;

14 }

15 Renderer ::~ Renderer(void) {

16 delete triangle;

17 }

renderer.cpp

The last function in our tutorial’s Renderer class is the most important one! RenderScene en-
ables our shader, and draws our triangle. Note how it also unbinds the shader by sending a value
of 0 to the glUseProgram function - for this simple tutorial this is a bit unnecessary, but it’s good
practice, just as with unbinding VAOs. As well as drawing our triangle, it also sets up the scene by

10



clearing the previous frame, and tells OpenGL to swap the front and back buffers around. glClear-
Color tells OpenGL what colour to clear the screen to - in this case a dark grey. This is better for
debug purposes than the default colour of black, as OpenGL tends to draw objects black if it has
a broken state, somewhere. The OGLRenderer base class already contains this function, but it was
worth explicitly stating its purpose here. glClear is the function that actually clears the screen to the
chosen colour, using the GL COLOR BUFFER BIT symbolic constant. In later tutorials you’ll
see how other buffers can also be cleared simultaneously by ORing several symbolic constants together.

18 void Renderer :: RenderScene () {

19 glClearColor (0.2f,0.2f,0.2f,1.0f);

20 glClear(GL_COLOR_BUFFER_BIT );

21

22 glUseProgram(currentShader ->GetProgram ());

23 triangle ->Draw ();

24 glUseProgram (0);

25

26 SwapBuffers ();

27 }

renderer.cpp

Main file

The following code is the basic template that all of the tutorials will use for their main functions, with
only minor variations. We begin by using a compiler pragma to load in the nclgl static library.
This, along with the include on line 3, gives you access to all of the nclgl-provided code, including
the Window class that handles all of the tedious OS window initialisation, allowing these tutorials to
concentrate solely on OpenGL programming. We also #include the header file for our new Renderer
class, so we can create an instance of our new Renderer.

In the main function, we start by declaring an instance of the nclgl Window class. It takes in 4
parameters - A string that is displayed at the top of the window, a window width and height (in
pixels), and a boolean value to determine whether to be fullscreen or not. If for some reason our
window fails to initialise, we make the program exit, via the if statement on line 6. Then, we create
an instance of our Renderer class, passing it our Window class, so that it knows what to render to.
As with the Window class, there is a function to check for successful initialisation.

1 #pragma comment(lib , "nclgl.lib")

2 #include "./ nclgl/window.h"

3 #include "Renderer.h"

4 int main() {

5 Window w("My First OpenGL 3 Triangle!", 800 , 600, false);

6 if(!w.HasInitialised ()) {

7 return -1;

8 }

9 Renderer renderer(w);

10 if(! renderer.HasInitialised ()) {

11 return -1;

12 }

13 while(w.UpdateWindow () &&

14 !Window :: GetKeyboard()->KeyDown(KEYBOARD_ESCAPE )){

15 renderer.RenderScene ();

16 }

17 return 0;

18 }

main.cpp

11



With our initialisation out of the way, we can enter our main loop. You’ve probably used something
similar to this before - it’s a while loop that continually updates our scene, until either the window is
closed (the first half of the while loop break condition), or the user presses escape (the second half).
In our loop, we’re going to repeatedly call the RenderScene function of our Renderer class. Once
the while loop is eventually broken out of, the function returns 0, ending the program execution.

Vertex Shader

Your first vertex shader isn’t going to do a lot - it’ll take in the vertex position and colour of each
vertex in turn, and then simply output them. We start off with a GLSL preprocessor definition,
to set out GLSL shader output to an OpenGL 3 compatible shader executable. Then, we define two
input variables - note how they have the same names as the values we bound to the Vertex Array
attributes on lines 9 and 10 of the Renderer class. Then we define an output interface block that
consists of a single 4-component vector, to hold our vertices colour. You can think of interface
blocks as being C++ structs that keep input and output data together.

Vertex and Fragment shaders must have a main function, just like C++ programs - and they’re
even defined in exactly the same way! Our vertex shader’s main function only has two lines; the
first sets the OpenGL output vertex position to the incoming vertex position, expanded out to the 4-
component vector format OpenGL uses internally for vertices. The second line sets the vertex shader
output to our incoming colour. That’s everything!

1 #version 150 core

2

3 in vec3 position;

4 in vec4 colour;

5

6 out Vertex {

7 vec4 colour;

8 } OUT;

9

10 void main(void) {

11 gl_Position = vec4(position , 1.0);

12 OUT.colour = colour;

13 }

basicVertex.glsl

Fragment Shader

Your first fragment shader is going to be even shorter - all it is going to do is output a fragment,
with the colour sent to it from the vertex shader. As with our vertex shader, we’ll start off by setting
the version preprocessor definition, so that the compiler knows it should compile an OpenGL
3 compatible shader. Next up, we’ll define our vertex input interface block. It contains the same
values as the output interface block of our vertex shader. Then, we have our output value - OpenGL
dissallows interface blocks for fragment output, so it is just a single vec4 - this makes sense, as all a
fragment shader can output are fragment colours. Finally, we create the required main function of
the fragment shader. As you can see, all it does is set the fragment colour to the incoming colour,
and return.

12



1 #version 150 core

2

3 in Vertex{

4 vec4 colour;

5 } IN;

6

7 out vec4 fragColour;

8

9 void main(void) {

10 fragColour = IN.colour;

11 }

colourFragment.glsl

Tutorial Summary

All being well, you’ll see something like the picture on page 1 when you run the program. If so, well
done! You’ve just written your first OpenGL 3 program, and your first shaders. A triangle might not
be too impressive, but you’ll have learnt a lot of the basic concepts of OpenGL rendering. You should
now know what a Vertex Array Object is, what a Vertex Buffer Object is, how to create them, how to
send geometry to the graphics card, and finally how to actually draw something on screen using vertex
and fragment shaders. You’ve also written two important classes, to encapsulate the functionality of
shaders and mesh drawing. In the next tutorial, you’ll build on these, and see how to move, scale
and rotate the triangle using the model matrix, and add perspective to the scene using the projection
matrix.

Further Work

1) Try making a few more shapes out of triangles - graph paper might come in handy here! For a 10
triangle mesh, what values would you use in the call to glDrawArrays? What about glBufferData?
How would you draw a quad instead of a triangle?

2) The colours defined in the triangle VBOs were automatically interpolated per-pixel, to give the
’rainbow’ effect. Investigate the smooth, and flat interpolation qualifers in GLSL.

3) Once Vertex Buffer data has been copied to the graphics hardware, it can be modified by mapping
it to system address space. Investigate the glMapBuffer and glUnmapBuffer OpenGL commands
- Try using them to generate random colours for the triangle every frame.

4) In this tutorial we used the GL TRIANGLES symbolic constant with glDrawArrays. In-
vestigate GL LINES, GL TRIANGLE STRIP, and GL POINTS. The OpenGL function GL-
PointSize might come in useful here. Does GL LINES behave how you would expect it to? How
could GL TRIANGLE STRIP help when drawing a quad?

5) When we buffered data to the VBO, we used the symbolic constant GL STATIC DRAW. In-
vestigate the GL DYNAMIC DRAW and GL STREAM DRAW symbolic constants. What
symbolic constant would you use to create deformable objects?

13


